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Abstract—A new proposal for the r>—¢, heat transfer model is presented along with an accurate prediction
of wall turbulent thermal fields. The proposed model reproduces the correct wall limiting behavior of
velocity and temperature under arbitrary wall thermal conditions. Assessment of the model constants and
functions are made to generalize applicability of the 1’~¢, model. The proposed model is tested with five
different typical thermal fields, which often occur in engineering applications, in wall turbulent shear flows.
The predicted results are compared with the available experimental and full simulation data, together with
the previous model predictions. It is shown that the present model works much better than the previous
models.

1. INTRODUCTION

THE TURBULENCE model for heat transfer is a set of
differential equations which, when solved with the
mean-flow and turbulence Reynolds stresses equa-
tions, allow calculations of relevant correlations and
parameters that simulate the behavior of thermal
turbulent flows. Like the classification of turbulence
models for the Reynolds stresses, the phenom-
enological turbulent heat transfer models are classified
into zero-equation, two-equation, and heat-flux equa-
tion models.

The zero-equation heat transfer model is a typical
and most conventional method for analyzing the tur-
bulent heat transfer, in which the eddy diffusivity for
heat z, is prescribed via the known eddy viscosity v,
together with the most probable turbulent Prandtl
number Pr, so that o, = v,/Pr,. Many previous studies
have, however, revealed that there are no universal
values of Pr, even in simple flows [1] (e.g. at the same
streamwise location, a value of Pr, close to the wall is
different from that away from the wall [2, 3]), and this
lack of universality restricts the applicability of a zero-
equation model. On the other hand, a heat-flux equa-
tion model ought to be more universal, at least in
principle. This model, however, is still rather primitive
and the results are not as satisfactory as initially
expected, mainly owing to a few unreasonable hypoth-
eses in the model. (With regard to some detailed prob-
lems and recent progress, see, for example, Nagano
and Tagawa [4-6].)

For a velocity field, the k—& model of turbulence is
now regarded as a powerful tool for predictions of
many complex flow problems including jets, wakes,
wall flows, reacting flows, and flows with centrifugal
and Coriolis forces [7]. As for scalar turbulence,

Nagano and Kim [8] developed a two-equation model
for heat transport (hereinafter referred to as the NK
model). They modeled the eddy diffusivity for heat «,
using the temperature variance £° and the dissipation
rate of temperature fluctuations ¢,, together with k
and &. The NK model is applicable to thermal fields
where a real value Pr, is unknown, and thus has uni-
versality much higher than the conventional zero-
equation model. It correctly predicts the thermal fields
in boundary layers, channel flows and free shear flows
[8, 9], though a slight change in model constants is
needed in the last case as in the k—¢ model [10, 11]. A
weakness is that the NK model has been developed
aiming mainly at the heat transfer analysis under the
uniform wall-temperature condition. Consequently,
in order to analyze heat transfer problems under vari-
ous wall thermal conditions, we need further improve-
ments of the NK model or development of a more
sophisticated r’~¢, heat transfer model.

In the present study, we develop a new 1°—s, model,
maintaining the original conception of the NK model.
Using the Taylor series expansion for the energy equa-
tion in the near-wall region, we make it clear how the
wall limiting behavior of turbulence quantities in a
thermal field varies with a wall thermal condition, and
then we construct the basic modeled equations to
satisfy these requirements. As a turbulence model for
a velocity field, we use a low-Reynolds-number type
k—¢ model of Nagano and Tagawa [12], which is
developed to make the model of Nagano and Hishida
[13] satisfy the physical requirements of the limiting
behavior of wall and free turbulence.

The present heat transfer turbulence model was
tested by application to turbulent boundary layers
with five different wall thermal fields ; namely, a uni-
form wall temperature, a uniform wall heat flux, a

3095



3096 M. S. YOUSsEF et al.
NOMENCLATURE
A,. B, turbulence model constants for f, X streamwise distance, measured from
A,, B, turbulence model constants for f; leading edge

¢y specific heat at constant pressure

C,. C,., C,» turbulence model constants for
velocity field

C;, Cpyy Cpa, Cpyyy Cpn turbulence model

constants for temperature ficld

turbulence model functions for

velocity field

fis Jors fon  turbulence model functions for
temperature field

f 1.

k turbulent kinetic energy, u,u,/2

P mean pressurc

Pr, Pr, molecular and turbulent Prandti
numbers

Gu wall heat flux

R time-scale ratio, 7,/7,

R, turbulence Reynolds number based on
1. k(kie) e v

R, turbulence Reynolds number, A%/ve
Ar®  temperature-variance difference, (]
t friction temperature, ¢,/pe,i,

x: r.m.s. temperature, ,/(¢*)

7.t mean and fluctuating temperatures

T+  dimensionless temperature, (T, — T)/1,
AT, AT,, AT, temperature differences,
(Tw - 71:)* (TM) - Tc)v (T\w - Tg)

U, friction velocity, (t,/p)""

I fluctuating velocity component in y
dircction

U.u mean and fluctuating velocity

components in x direction

mean and fluctuating velocity

components in .x; direction

U*  dimensionless velocity, U/u,

v, ¥ coordinates in streamwise and wall-
normal directions

X, streamwise distance, measured from
leading edge to the location of a step
change in wall thermal condition

X, streamwise distance, measured from a
sudden change in wall thermal
condition

y*  dimensionless distance from wall, u. v/

() time mean scale.

Greek symbols

%, %, molecular and eddy diffusivities for
heat

) boundary layer thickness

do boundary layer thickness at a sudden
change in wall thermal condition

Sy thermal layer thickness

d,; Kronecker delta

o dissipation ratc of k. v(lu,/dx,)”

& dissipation rate of 1*/2, 2(21/¢x)’

v. v, molecular and eddy viscosities

P density

gy, 0., 6y, 0, turbulence model constants for
diffusion of k, &, £7/2. and &,

1,1, time and wall shear stress

T mixed time scale, o/t (I4+m = 1)

T time scales of velocity and tempcrature

ficlds. kle. 13(2¢,).

us Ty

Subscripts
¢ boundary-layer edge
w wall

wo  wall upstream of a sudden change in wall
thermal condition

ws wall at a point of a sudden change in wall
thermal condition.

stepwise change in wall temperature, 4 constant hcat
flux followed by an adiabatic wall, and finally a con-

stant temperature followed by an adiabatic wall.

Except for the new points, Section 2 provides only
a brief presentation of the mathematical model of
turbulence for velocity field. Details of a new 17—
heat transfer model are provided in Section 3. Section
4 gives a short description of the numerical solution
algorithm. Comparison between the proposed model
results and the available experimental and full simu-
lation data. together with the predictions from pre-

vious models, are provided in Section 5.

2. TWO-EQUATION MODEL OF TURBULENCE

A velocity field is described with the following con-

FOR VELOCITY FIELD

tinuity and momentum equations

where D/Dr = ¢jét+ U,8/éx;.

In the k— model, the Reynolds stress i, in equa-

tion (2) can be obtained from the following set of
equations

3)



A two-equation heat transfer model

De ¢ v+ O _c. ¢ a0, c fil
Dr_ﬁx,- ax ”ku,uj o, 2oy

(6)

As indicated by Myong and Kasagi [14], and by
Nagano and Tagawa [12], imposing the rigid bound-
ary condition (i.e. no-slip) at the wall does not necess-
arlly lead to the correct asymptotlc solutions of k o
yi, —ur oc ¥ v oc ¥} and & oc 30 for y — 0, unless
the wall 11m1t1ng behavior of turbulence is properly
incorporated in a turbulencc model. In the present
study, we use an improved k—¢ turbulence model
cvolved by Nagano and Tagawa [12] (referred to as
the NT model), which reproduces strictly the limiting
behavior of wall and free turbulence. Constants and
functions of the NT model are summarized in Table
1. Note that, in the NT model, away from the wall
(where the turbulence Reynolds number R, becomes
large), the relation v, oc k'2L (L. = k¥?/¢) holds and
the eddy viscosity is thereby determined by the large-
scale energy-containing eddies ; but close to the wall,
the eddy viscosity is reduced to v, oc k"% (n = (v¥/e)*
is the Kolmogorov microscale) and determined by the
small-scale eddics dominating mainly the dissipation
process.

3. TWO-EQUATION MODEL FOR THERMAL
FIELD

3.1. Governing equations

Using the concept of eddy diffusivity for heat «,, the
governing equations of the two-equation heat transfer
model may be written (see, Nagano and Kim [8];
Nagano et al. [15]) as

DT_ é oT ;

Dt ay, aﬁx, ! M
— oT

~ul =2 o— (8)

& o0, & \

4 v Gt 88
—Coifor 5 = Coafoe %
t

As a time-scale equivalent to the relative ‘lifetime’ of
the energy-containing eddies or temperature fluc-

Table 1. Constants and functions in the NT model equations
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tuations, we adopt the mixed time-scale 7, = ¥\t
(I+m = 1), where 1, = kj¢ and 1, = (¢}/2)/¢, are the
dynamic and scalar time-scales, respectively. Obvi-
ously, 7,, blends both thermal and mechanical con-
tributions. The characteristic length scale (i.e. spatial
extent of a fluctuating temperature) can hence be writ-
ten as L, = k'*1,,, and the eddy diffusivity for heat
can be modeled as o, oc k'L, = kt,, (equation (9)).
The present expression for «, can be regarded as the
generalized form for the eddy diffusivity introduced
by Nagano and Kim [8)]. As described later, the indices
! and m are to be determined so as to satisfy the
requirements for the wall limiting behavior of ther-
mal turbulence. In the NT model for velocity field,
the wall-proximity effects are incorporated mainly
into the model function of f,. Accordingly, we reflect
the near-wall effects in a thermal field on the model
function of f,.

The optimal value of eddy diffusivity for heat «, can
be given as a function of the state of both velocity and
thermal ficlds by solving the transport equations for
k, &, 1, and &,. The determination of the model con-
stants and functions in equations (9)—(11) will be dis-
cussed later.

3.2. Modeling of wall limiting behavior of velocity and
temperature

As mentioned above, we devise the modeling of f,
in equation (9), which has some properties in common
with f, in equation (4), to account for low-Reynolds-
number and/or wall-proximity effects, thus, taking
into account the formulation for f, given in Table I,
we write f; as follows

fi= U —exp(=p /AN + B R (12)
where R, = k(k/e)(:*/e)"/v is the turbulence Reyn-
olds number based on the mixed time scale.

The behavior of the turbulent quantities of vel-
ocity and thermal fields near the wall can be inferred
from a Taylor series expansion in terms of v, together
with the continuity, momentum and energy equations,
namely,

U=yt +ay+apt 4 -
=hby+boyi+biyi+
r=cpite, i
w=dy+d,y’+diy+
k=2 = (b +d)2]y”

bty

T C, Co [ g, g, "

[I—CXP(AIJ'/A,‘)]“
x(1+ B, /R

145 19 1.4 1.3

J a4

{1=03exp[—(R/6.5)7]}
x[1—exp (—r*/6)]* 26 41
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v(dtkjoy?), = v(bi+dd)
T =Pyt gyt gyt 4
=1 +hy+hp + -
1= 2 2 )y
vl = eyt 3 (et o)y

b = A[02(212)/037), = alhi+2h1)  (13)

In equation (13), considering a correspondence
between k and ¢° profiles near the wall, a smooth
change in temperature variance /% in the immediate
vicinity of the wall is assumed, i.e. (2°/éy), =0,
which is exact in the cases of both uniform wall tem-
perature and uniform wall heat flux. From equation
(13), in the vicinity of the wall, we obtain the following
relations: U =yt w o y. v o 3w oo
T+ = Pry* andt oc y7? (where, p = 2: without wall-
temperature, 1, fluctuations; p=0: with ¢, fluc-
tuations). These asymptotic relations provide the rep-
resentation for the wall limiting behavior of tur-
bulence given as: k oc 2. —ut oy, ooy 1o yn,
vtoc v and g« p". thus, substituting these
asymptotic solutions for equations (9) and (12), we
obtain

o, o )’,4— 2L m et 2/». (]4)

Note that, as seen from equation (8), v7 and &, have
the same power for » necar the wall. Consequently,
from the wall limiting behavior of turbulence, we
have the following two regimes according to the wall
thermal conditions

a, oy’ for p=2 (without ¢, fluctuations)

(15)

a oc ¥y for p=0 (with r, fluctuations).

To satisfy the above requirements consistentiy, equa-
tion (14) yields: n = 3/4, /= —1,and m = 2.

From the foregoing consideration, the eddy diffu-
sivity for heat o,, which takes into account the near-
wall behavior of thermal turbulence. can be written

as

o, =C, [k (f) l( 22 )2 =C, f [:- (2R)* (16)
where

fi=—exp (=p /AN + BRI (T

R, = k(k/e) (/) )y = R(2R):.  (18)

Here R = 1,/t, = (£°/2¢,)/(k/e) is the thermal-mech-
anical time-scale ratio. As seen from equation (18),
the turbulence Reynolds number, R, based on the
mixed time scale is directly linked to the hydro-
dynamic turbulence Reynolds number R, = k%jve
through the time-scale ratio R. In particular, when
the velocity and thermal fields are in local equilibrium,
R becomes ncarly 0.5 (Béguier ef al. [16]), and hence
o, = C,f;k’je. Ry=R,, and Pr,=C,/C,. It should
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also be mentioned here that, in the region away from
the wall, the present formulation for % given by equa-
tion (16) is compatible with a statistical model
developed by Yoshizawa [17].

On the other hand, from equation (11), the molec-
ular diffusion term balances with the dissipation terms
aty =20
‘1(; é; = Cpi./m i + Cipafiz H" -
cy r k

(19)

Considering the limiting behavior of wall turbulence,
Sfo2oc¥? and fp, oc ¥* (without ¢, fluctuations) or
forocy” where n>0 (with ¢, fluctuations) are
required to satisfy equation (19). In free turbulence,
as described in the next section (see cquation (29)),
the limiting behavior requires
(ﬂl)l_/l’)l = C..z‘f,i - L (20)

In the present model, the following equations are thus
proposed to meet the requirements for both wall and
free turbulence

S =11 “eXp(’,‘#/‘Bm)]:
Jo2 = (1/Cou)(Con f, — D1 —exp (— vy /Bpa)]’
with f, = 1—0.3 exp [—(R,/6.5)7].

(21
(22)

3.3. Model constants

The constants appearing in the present two-equa-
tion heat transfer model are determined as follows.
Firstly, we specify a value of C, in equation (16)
defining the eddy diflusivity for heat . In the log-law
region where the molecular diffusion is negligible, i.e.
. =1,=1.C, may be given from equations (4) and
(16), together with the turbulent Prandtl number
Pr,. = v/a, by

¢, = CJIPr(2R)’]

2

(23)

thus, substituting the typical values of C, =0.09,
R=0.5, and Pr,= 0.9 (Nagano and Kim [8]), we
obtain C, = 0.10.

We determine the constants (i, and Cp, in the g
equation (11) from the decay law of homogeneous
turbulence. In a homogeneous decaying turbulent
flow. equations (5), (6), (10) and (11) become simply

o 24)

v - (

_ de el
dr = Coaf. A (25)
_dr?

/ e —2¢, (26)

_ de, el .oeg )
u dx = —Cpi /o 72 —Chafim A (27)

where the x axis is taken in the flow direction. On the
other hand, it is known that the time-scale ratio R =
(12/2¢,)/(k/e) does not change in the flow direction in
homogeneous grid-generated turbulence (Newman ¢r



A two-equation heat transfer model

al. 18], Warhaft and Lumley [19]), thus, rewriting
equation (27) in terms of R and substituting equations
(24)-(26) into this equation, we obtain

Sde, 1 (&0 2r
‘&&—ﬂxkz‘q¢?2_2?

&l &t
= —2—72 ~(Coafi— Uf- (28)

Equations (27) and (28) give the following relations
Cl)lfDl =2
CD:fm = C»;z.ﬂ;_ 1.

Equation (29) is also valid for the initial period
(fi = for =fv2 = 1) in decaying turbulent flows, and
hence we have Cp,; = 2 and Cp, = C,,—1 =09.

The constants o, and 6, for the turbulent diffusion
terms in the 1% and ¢ equation, (10) and (11), are
assigned the same value of 1.0. This is consistent with
the NK model.

The model constants Cp, and Cp, for the production
terms in the g-equation (11) are determined by con-
sidering the characteristics of the log-law region (con-
stant stress—heat-flux layer) in wall turbulence. In this
region, the convection terms in the transport equa-
tions for k, ¢ r*. and ¢ can all be ignored, and the
production terms for k and % balance with the respec-
tive dissipation terms, thus, with equation (16), rewrit-
ing equation (11) gives

29

With the above-mentioned characteristics of constant
stress—heat-flux layer, the tollowing relation is
obtained from equation (30)

Cpy = (Cyyy _C|>1),/2R+CD2_(KZ/P"I)/‘%C;/Z (31

where « is the von Karman constant. Equation (31)
18 similar to the well-known relation in the k—¢ model
given by

Cx:l =La— KZ/G." C‘;l/z' (32)

The value of Cp, = 0.64 is then specified if we sub-
stitute the foregoing values of Cp,, Cpy, R, Pry, and
C, for equation (31), together with k = 0.39-0.41 and
Cp, = 1.70 which is determined on the basis of com-
puter optimization. Note that the present value of
Cpy = 1.70 is very close to the NK model constant,
Cp; = 1.80. (Recently, Jones and Musonge [20]

Cp: oy Gy 5

(L —exp (—y*/4,)])*
0.1 L7 064 20 09 10 10

x(I+B;/RY) [1—exp(—y7/SHP  x[l—exp(~y*/6))"  26/Pr'? 3.4
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developed the transport equation for g similar to
equation (11) and assigned the value of Cp = 1.70
and Cp, = 1.40.)

The constants 4; and B, in equation (17) are set to
A; = A,/Pr'* and B, = 3.4, after consideration of the
wall-proximity and Prandtl number effects described
by Nagano and Kim [8]. The constants By, and B,
in equations (21) and (22), on the other hand, are
assigned to B,; = 5.8 and By, = 6.0 in the light of the
constant for f, in Table 1.

The model constants and functions of the proposed
two-equation heat transfer model are summarized in
Table 2.

4. NUMERICAL SCHEME AND BOUNDARY
CONDITIONS

Full details of the present numerical method of
solution are given in Nagano and Kim [8] and Nagano
and Tagawa [12]. The numerical technique used is the
well tested Keller’s Box method (Bradshaw ez al. [21]).
Non-uniform grids in the normal direction with
shorter steps close to the wall and longer steps away
from the wall are usually employed for the calculation
of turbulent boundary layers due to the large gradients
near the surface of the body [22]. There are different
techniques for constructing variable grid spacing in
the direction normal to a solid wall as discussed in
detail by Cebeci ez al. [23], and Blottner [24, 25]. The
following non-uniform grid across the layer is thus
employed

¥, = Ay (K =/(K—1) (33)

where Ay, the length of the first step, and K, the ratio
of any two successive steps, are chosen as 10" ° and
1.03, respectively. To obtain grid-independent solu-
tions, 201 cross-stream grid points were used. The first
grid point was normally located well into the viscous
sublayer, i.e. 3* < 0.03. To confirm the numerical
accuracy, the cross-stream grid interval was cut in half
for the uniform wall temperature case. No significant
differences were seen in the results. The maximum
streamwise step-size was restricted to a sublayer thick-
ness, i.e. Ax* < 1.

The boundary conditions at the wall (y = 0) for a
velocity field are: U = k = 0 and &, = v(3%k/dy?),, or
equivalently ¢, = 2v(6k'2/dy)3 as can be scen from
equation (13). The latter boundary condition for ¢
at the wall provides much stabler computations and
hence is used in the present model. For a thermal field,
on the other hand, the wall boundary conditions are:
T=T, and 1> = 0 for a uniform wall temperature.

Table 2. Constants and functions in the proposed model equations

Jou Jo2 A; B;

(HCo)(Con fi— 1)
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w(@T/éy), = —q./pc,and (81%/dy),, = 0 for a uniform
wall heat flux, and (8T/dy),. = 0 and (0%/éy),, = 0 for
an adiabatic wall. Note that the temperature-variance
dissipation rate balances with the molecular diffusion
at the wall, so that &, = a(@?(/2)/0y), holds,
irrespective of wall thermal conditions. Again, it
can be seen from equation (13) that this boundary
condition for ¢, is identical to the expression: &, =
(@ (A)/Ey)d with A = (v, v 2)—13(x. 0, 2) =
1*—t., which provides stabler computations and
thus is used in the present model. At the free stream,
the boundary conditions are U = U,, T=T., and
k=e=1"=¢=0.
The criterion for convergence is

max I yu+sh Y("J|/’max | Y“)[ < |0 : (34)

where Y =0Z/¢v(Z: U, k, &, T, ¢, and &), and i
denotes the number of iterations. The computations
were performed on a TITAN 3000 computer.

5. RESULTS AND DISCUSSION

As described in the preceding section, there are
two types of wall limiting ‘behavior for turbulence
quantities in a thermal field, both of which depend on
the imposed wall thermal conditions. To verify the
adequacy of the present model, first we have analyzed
the thermal fields in a boundary layer (air flow) with
two typical boundary conditions, i.e. with a uniform
wall temperature and with a uniform wall heat flux.
Next, the proposed model was tested by application
to boundary layers with other three different thermal
fields ; namely, a step change in wall temperature, a
constant heat flux followed by an adiabatic wall, and
a constant temperature followed by an adiabatic wall.

5.1. Uniform temperature and uniform heat-flux walls

In Fig. I, comparison is made between the exper-
imental temperature profiles in the turbulent bound-
ary layers under two different wall thermal conditions
(Zukauskas and Slangiauskas [26], Gibson et /. [27].
and Antonia et af. [28]) and the present predictions.
The model predictions by Launder and Samaraweera
[29] are also shown for comparison. It can be seen
that the present model gives good predictions for both
the uniform wall temperature and uniform wall heat-

30 ———— 1
| Experiments
; o Zukauskas— Slantiauskas (g, =const.}
l o Gibson et al. (T, =const.)
i & Antonia et al. (g, =const.}
20
+
e~
LU Present, Predictions
v T, =const
| — — g, =const.
: o —-—~ Launder - Samaraweera Predictions
o i
OM L TSRS B
1 10 10? . 10
Y

F1G. 1. Mean tcmperature profiles in a flat-plate boundary
layer.
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flux conditions, while the predictions of Launder and
Samaraweera, who used a second-moment closurc
model, in the outer region of a boundary layer arc less
satisfactory. Predictions for temperature close to the
wall were not presented in their paper [29].

Figure 2 shows the near-wall profiles of temperature
variance . For a uniform wall temperature con-
dition, the present model predicts the relation 1%/7 =
0.03p™ % in the vicinity of the wall, thus satisfying the
required wall limiting behavior. For a uniform wall
heat-flux condition, on the other hand, the predicted
1* distribution approaches a constant non-zero value
for y — 0, which is also consistent with the outcome
from the Taylor series expansion analysis. The results
of direct numerical simulations (DNS) for channel
flows with a uniform wall temperature (Kim and Moin
[30]) and with a quasi-uniform wall heat flux, i.c.
éT,/0x = constant and 17 = 0 (Kasagi er al. [31]) arc
included in Fig. 2 for comparison, though the relevant
Reynolds numbers are much lower than those in the
present predictions. Both DNS results provide solu-
tions similar to the present ones. Included here are the
experimental data of Antonia er al. [28] (g, = con-
stant) and Subramanian and Antonia [32] (¢, = con-
stant). It can be seen that, good agreement is obtained
between the present predictions and the experimental
data.

As discussed previously, the turbulent heat flux v/
needs to satisfy the wall limiting behavior of ¢7 « 1
for a uniform wall-tempcrature case and ¢7 x v* for a
uniform wall heat-flux case. As shown in Fig. 3, the
present model reproduces these relations accurately
and gives good agreement with the measurements of
Antonia er al. [28].

In the present model, we use the physically strict
relation ¢, = oc(ﬂw/'(A}j)/’ﬁ),v)\f, as a wall boundary con-
dition, thus, in Fig. 4, the near-wall distributions of ¢,
predicted by the present model are compared with
both the result of the DNS of Kasagi er «/. [31] and
the measurement of Krishnamoorthy and Antonia
[33]. The present results for constant wall temperature
and constant wall heat flux. are identical except very
close to the wall where differeat wall boundary con-
ditions are imposed. The present results arc in good
agreement with the DNS data of Kasagi er al. lor

10

Predictions
— T, =const
— - g, =const.

Experiments
o Antonia et al. 4

& Subramanian — Antovia
1k /

DNS

— - Kasagi et al
—-=—  Kim- Moin
10—2 L SIS S S U Y R S e W e 1 |
107! 1 10 10°
y*

FiG. 2. Near-wall behavior of temperature variance.
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w r
jd
s I
=
.
10-2 Predictions
~——— T =const.
==~ gy =COmnst.
10-4 Experiment
o Antonia et al.
10’6 Lol ity
10-1 1 10 102 10
yt

FIG. 3. Near-wall behavior of turbulent heat flux.

y* > 20. It can also be seen from the figure that the
proposed model provides a reasonable overall con-
sensus with the experimental data of Krishnamoorthy
and Antonia [33]. In the k—e model, it is well known
that the model prediction gives values lower than
the DNS [34, 35]. The difference between the results
of the DNS and the present model near the wall would
be attributed to the similar reasons found in the k—
model, although the detailed discussion is left for a
future study.

5.2. Step change in wall temperature

To further verify the effectiveness of the present
model for calculating various kinds of turbulent ther-
mal ficlds, the prediction of mean temperature profiles
for a constant wall temperature (T, = T.+16°C)
followed by another constant wall temperature (T, =
T.) are shown in Fig. 5. Also, included here are the
experimental data of Charnay er al. [36] and the
calculations of Browne and Antonia [37] at the same
streamwise locations. It must be mentioned that
Browne and Antonia used a two-equation model of
turbulence and a turbulent heat-flux equation model
in their calculations. As is clearly seen, the present
predictions are in good agreement with the measure-
ments while the results of Browne and Antonia give
considerable overpredictions.

5.3. Constant heat flux followed by adiabatic wall
The test case of a constant heat flux followed by an
adiabatic wall is also very suitable for assessing the

Predictions
R 16 . ——eme— T\ =coOnNSt.
';‘ o T — = v gy =CONSL.
FBUY AP Y DNS
F 4 —--— Kasagi et al.
E

4 Experiment
--+--Krishnamoorthy - Antonia
0 | L " 1 B U SR S
0 10 20 30 40

+

Y

FiG. 4. Comparison of the model results for the dissipation
rate of temperature variance with the measurements of
Krishnamoorthy and Antonia {33].
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Fic. 5. Comparison of the predicted mean temperature pro-
files with the measurements of Charnay et af. [361.

performance of the model. Figure 6 shows a com-
parison between the present results and both the
measurements of Subramanian and Antonia [38] (as
reported in Browne and Antonia [37]) and the cal-
culated results of Browne and Antonia [37] for the
mean temperature profiles across the boundary layer.
Again, for this test case, the present results are seen
to be in good agreement with the experimental data ;
however, rather poor agreement is obtained between
the predicted results of Browne and Antonia and the
measurements as shown in Fig. 6.

The distributions of r.m.s. temperature predicted
from the proposed model are shown in Fig. 7, com-
pared with the measurements of Subramanian and
Antonia [38]. The general level of agreement with the
experimental values at all locations is found to be very
good.

5.4. Constant temperature followed by adiabatic wall
The last test case for which calculations have been
performed is concerned with the thermal fields in a
boundary layer along a constant wall temperature
followed by an adiabatic wall. Figure 8 shows a com-
parison of the predicted results with the measured
values (Reynolds et al. [39]) of temperature differences
between the wall and the free stream. Figure 8 also
includes the wali-temperature distribution down-
stream of the discontinuity in heat flux predicted by

Const. Heat-Flux — Adiabatic Wall
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Fi1G. 6. Comparison of the predicted mean temperature pro-
files with the measurements of Subramanian and Antonia
[38].
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Fig. 7. Comparison between the calculated r.m.s. tem-

perature profiles and the measurements of Subramanian and

Antonia [38].

the integral analysis of Reynolds er «/. [39] and of
Rubesin [40]. It can be seen that the present model
gives results similar to the integral-equation pre-
dictions of Rubesin and in acceptable agreement with
the measurements.

Now that the forgoing test cases have validated the
performace of the present model, we will look in more
detail at the turbulent thermal field in the last test case.
The measurements are not available for turbulence
statistics ; thus, the model predictions are the only
means to understand the phenomena. In what follows,
turbulence quantities related to temperature are nor-
malized by AT, (= T,,—7,) and the streamwise
location X by X, which is a distance from a leading
edge to the location of a step change in surface thermal
condition.

Variations in the temperature variance ¢* and tur-
bulent heat-flux w7 profiles in the thermal layer
upstream and downstream of a sudden change in sur-
face condition (i.e. constant temperature-adiabatic
wall) are shown in Figs. 9 and 10, respectively. It can
be seen that the temperature variance 1 peaks near
the wall in the upstream region (X/X, < 1); however,
in the downstream region (X/X, > 1) where there is
no heat input from the wall, 17 decreases with increas-
ing X and a maximum point moves outward towards
the edge of the thermal layer. This means that, down-
stream of the discontinuity in wall thermal condition,
the generation of 1%, which mainly occurs in the wall
region of the heated flow, deteriorates and the
diffusion of ¢ from the wall region to the outer layer
becomes predominant, thus gradually thickening the
thermal-layer thickness. From Fig. 10, it is seen that
almost the same phenomenon occurs in the decaying

16
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Fi1G. 8. Comparison of the predicted variation of wall tem-
peratures with the measurements of Reynolds er al. [39].
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FiG. 9. Variation of temperature variance for constant tem-
perature-adiabatic wall.

region of vr. It is also worth noting that the decay
process is slow in a wall turbulent thermal field.

The variation of ¢ with X shown in Fig. 11 discloses
an important feature of a decaying thermal layer. The
decay of the dissipation of 7% in the turbulent bound-
ary layer on an adiabatic wall is very rapid. This,
in turn, brings about tie slow decay of temperature
fluctuations as shown in Fig. 9. The cause and effect
may be explained by the resultant temperature profiles
shown in the next figurc.

Figure 12 shows how a wall turbulent thermal layer
decays when heat input is cut off. A very abrupt
decrease in mean fluid temperature occurs in the wall
region so as to satisfy the no heat-input condition,
i.e. (8T/dy), = 0. Within a short distance from the
discontinuity point, the profile of mean temperature
becomes uniform over most of the thermal layer. The
generation of both 77 and &, through a mean tem-
perature gradient thus disappears. This is the reason
why the values of 7* and ¢, decrease sharply in the wall
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FiG. 10. Variation of turbulent heat flux for constant tem-
perature-adiabatic wall.
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F1G. 11. Variation of dissipation rate of temperature variance
for constant temperature-adiabatic wall.
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region as shown in Figs. 9 and 11. Consequently, a key
factor which controls the decaying thermal turbulence
is the turbulent diffusion. Although the experimental
documentation is needed, these resuits demonstrate
the usefulness of the proposed two-equation heat
transfer model to investigate the structure of thermal
turbulence.

In this study, we have tested the proposed heat
transfer model under various kinds of wall thermal
conditions. Dependency on a molecular Prandtl num-
ber is not, however, tested systematically, hence, in
the next paper, we will report on this subject.

6. CONCLUSIONS

The main conclusions of the present investigation
can be summarized as follows.

(i) The model developed in this work reproduces
the correct wall limiting behavior of thermal fields
which changes with the wall thermal conditions.

(ii) In comparison with second-moment, heat-flux
equation models, the present model can be applicable
to turbulent thermal fields with different thermal wall
boundary conditions. The previous heat-flux models
failed to predict the near-wall asymptotic behavior
in a simple case of wall thermal boundary condition
as reported by Launder and Samaraweera [29] and
provided rather unsatisfactory predictions of tur-
bulent thermal quantities [37]. It is established, there-
fore, with reinforced evidence, that the performance of
the proposed model is much better than the previous
models.

(iii) The proposed heat-transfer model discovers
novel features of the decaying process of turbulent
thermal-field quantities in a boundary layer and adds
a reasonable comprehension about the scalar trans-
port mechanisms in this physical phenomenon.
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MODELE A DEUX EQUATIONS POUR CALCULER LES CHAMPS THERMIQUES
TURBULENTS DANS DES CONDITIONS THERMIQUES ARBITRAIRES
A LA PAROI

Résumé-—On présente un nouveau modéle 77, avec une prédiction précise des champs turbulents thermique
de paroi. Ce modéle reproduit correctement le comportement limite a la paroi de la vitesse et de la
température dans des conditions thermiques pariétales arbitraires. On fait P'évaluation des constantes et
des fonctions du modéle pour généraliser applicabilité du modéle 17-¢,. Celui-ci est testé avec cing champs
thermiques différents typiques que 'on rencontre souvent dans ies applications pratiques, Les résultats
sont comparés avec les données expérimentales disponibles et aussi avec les prédictions de modéles
antérieurs. On montre que le présent modéle convient mieux que les autres déja connus,

EIN ZWEIGLEICHUNGSMODELL FUR DEN WARMEUBERGANG IN EINEM
TURBULENTEN STROMUNGSFELD BEI BELIEBIGEN THERMISCHEN
WANDBEDINGUNGEN

Zusammenfassung—Es wird ein neues Modell vom Typ " —g, fiir den Wirmeiibergang vorgestellt, was
cine genaue Berechnung des wandnahen turbulenten Temperaturfeldes erlaubt. Das vorgeschlagene Modell
bildet das korrekte Verhalten von Geschwindigkeit und Temperatur an der begrenzenden Wand bei
beliebigen thermischen Wandbedingungen nach. Fiir eine allgemeine Anwendbarkeit wird eine Bewertung
der Modellkonstanten und -funktionen vorgenommen. Das vorgeschlagene Modell wird anhand von fiinf
typischen thermischen Feldern iiberpriift, die oft bei technischen Anwendungen in turbulenten wandnahen
Scherstromungen auftreten. Die Modellergebnisse werden mit verfligbaren Versuchsergebnissen sowie mit
Ergebnissen aus vollstindigen Simulationen und mit Ergebnissen aus bisher gebriuchlichen Modellen
verglichen. Es zeigt sich, daB} das vorgestellte Modell besser als die seither gebriduchlichen Modelle arbeitet.

ABYXTIAPAMETPUUYECKAS MOAEAL TETUIONEPEHOCA Jis1 OIPEJEJIEHNS
TYPBYJIEHTHBIX TEIUUIOBBIX IMOJIEN ITPU TTPOMU3BOJIBHBLIX TEIMJIOBBIX
YCIIOBUSAX HA CTEHKE

Annoramms—Hapsany ¢ TOYHEIM oupeAcncHneM TYPOYICHTHBLIX TEMUIOBBIX TOJEH Ha CTEHKE Npeiia-
raercs Hosas [°—¢, MOIeNp Tensoneperoca. [Ipefnoxkesnas MOJENb aleKBATHO BOCTIPOH3BOANT Mpese-
JIbHbIE XaPAKTEPHCTHKH CKOPOCTH H TEMIEPATYPhl NIPH NIPOH3BOJIBHAIX TEILIOBbIX yCJIOBHsX HA cTeHke. C
Heblo 0GOGLIEHHs NPUMEHUMOCTH [>—¢, MOJEJA TPOBEIEHa OUEHKa MOCTOSHHBIX H (YHKIMH MOLETH.
D GexTHBHOCTL MOAENM TAKKe NPOBEPACTCS NIPH ISTH PasINYHLIX THIMYHLIX PACTpEREfCHURX TEMIE-
PaTypsi, Y4CTO BCTPEHAIOWMXCS B HHKSHEDHBIX NIPHIOXCHHUAX, B YCIOBHAX NPHCTEHHBIX TYPOyIeHTHBIX
CABHTOBBIX TeucHMH. Pe3yAbTaThl pAcCYETOB CPaBHUBAIOTCH ¢ HMEIOIHHMMCH OJKCIEPHMEHTAIbHBIME
JMAHHBIMH B PE3YJIbTATaMi MOACIMPOBAHHAS, 2 TAKXKE C PACYETAMH IO PAHEe NPHUMEHABLUHMCS MOIEIAM.
[Tokazano, YTO NpeIoKEHHAS MOJe b HAMHOTO 3K TUBHEH NpeIblIyIHX.



