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Abstract-A new proposal for the 2-6, heat transfer model is presented along with an accurate prediction 
of wall turbulent thermal fields. The proposed model reproduces the correct wall limiting behavior of 
velocity and temperature under arbitrary wall thermal conditions. Assessment of the model constants and 
functions are made to generalize applicability of the &E, model. The proposed model is tested with five 
different typical thermal fields, which often occur in engineering applications, in wall turbulent shear flows. 
The predicted results are compared with the available experimental and full simulation data, together with 
the previous model predictions. It is shown that the present model works much better than the previous 

models. 

1. INTRODUCTION 

THE TURBULENCE model for heat transfer is a set of 

differential equations which, when solved with the 
mean-flow and turbulence Reynolds stresses equa- 

tions, allow calculations of relevant correlations and 
parameters that simulate the behavior of thermal 
turbulent flows. Like the classification of turbulence 
models for the Reynolds stresses, the phenom- 
enological turbulent heat transfer models are classified 

into zero-equation, two-equation, and heat-flux equa- 
tion models. 

The zero-equation heat transfer model is a typical 
and most conventional method for analyzing the tur- 
bulent heat transfer, in which the eddy diffusivity for 

heat X, is prescribed via the known eddy viscosity v, 
together with the most probable turbulent Prandtl 

number Prt, so that LX, = v,/Pr,. Many previous studies 
have. however, revealed that there are no universal 

values of Pr, even in simple flows [l] (e.g. at the same 
streamwise location, a value of Pr, close to the wall is 
different from that away from the wall [2,3]), and this 
lack of universality restricts the applicability of a zero- 
equation model. On the other hand, a heat-flux equa- 

tion model ought to be more universal, at least in 
principle. This model, however, is still rather primitive 
and the results are not as satisfactory as initially 
expected, mainly owing to a few unreasonable hypoth- 

eses in the model. (With regard to some detailed prob- 
lems and recent progress, see, for example, Nagano 
and Tagawa [46] .) 

For a velocity field, the k--c: model of turbulence is 

now regarded as a powerful tool for predictions of 
many complex flow problems including jets, wakes, 
wall flows, reacting flows, and flows with centrifugal 

and Coriolis forces [7]. As for scalar turbulence, 

Nagano and Kim [8] developed a two-equation model 
for heat transport (hereinafter referred to as the NK 

model). They modeled the eddy diffusivity for heat tl, 
using the temperature variance t* and the dissipation 
rate of temperature fluctuations E,, together with k 

and E. The NK model is applicable to thermal fields 
where a real value Pr, is unknown, and thus has uni- 
versality much higher than the conventional zero- 
equation model. It correctly predicts the thermal fields 
in boundary layers, channel flows and free shear flows 
[8, 91, though a slight change in model constants is 

needed in the last case as in the k--E model [ 10, 111. A 
weakness is that the NK model has been developed 
aiming mainly at the heat transfer analysis under the 

uniform wall-temperature condition. Consequently, 
in order to analyze heat transfer problems under vari- 
ous wall thermal conditions, we need further improve- 

ments of the NK model or development of a more 
sophisticated t*%, heat transfer model. 

In the present study, we develop a new F-E, model, 
maintaining the original conception of the NK model. 
Using the Taylor series expansion for the energy equa- 
tion in the near-wall region, we make it clear how the 
wall limiting behavior of turbulence quantities in a 
thermal field varies with a wall thermal condition, and 

then we construct the basic modeled equations to 

satisfy these requirements. As a turbulence model for 
a velocity field, we use a low-Reynolds-number type 
k--E model of Nagano and Tagawa [12], which is 
developed to make the model of Nagano and Hishida 
[13] satisfy the physical requirements of the limiting 
behavior of wall and free turbulence. 

The present heat transfer turbulence model was 
tested by application to turbulent boundary layers 
with five different wall thermal fields ; namely, a uni- 

form wall temperature, a uniform wall heat flux, a 
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NOMENCLATURE 

A,,, B,, turbulence model constants for .f;, 
A,, B,, turbulence model constants for ,/; 

(‘I’ specific heat at constant pressure 

c’,,. c::,. c,, turbulence model constants for 
velocity field 

C,, C,,, . CpI, c’,,, 1 C,)? turbulence model 
constants for temperature field 

,/;,, ,f; turbulence model functions for 
velocity field 

f;. /Ll . .fk turbulence model functions for 

temperature fieId 
i( turbulent kinetic energy, u,u,:l 
P mean pressure 

Pr, Pr, molecular and turbulent Prandtl 
numbers 

(IW wall heat Rux 

R time-scale ratio, t,/r,, 

R,, turbulence Reynolds number based on 
I,,. k(‘Q,r:) ‘(f’:‘i:,)‘:l 

R, turbulence Reynolds number, I\‘:N 
At’ temperature-variance diffcrcnce, t'--t,: 

t, friction temperature, yW/~~(*,,z4, 
t’ r.m.s. temperature, ,‘(7) 

7, t mean and ~uctuating telnperat~res 
7“ dimensionless temperature, (FW - T)/r, 
AT, AT,,, AT, temperature differences. 

(~*-C), (7 u,, -7J. (i;,“,--TC,, 

14, friction velocity, (z-/p) ’ ’ 
I’ fluctuating velocity component in 1’ 

direction 
C?. u mean and ~uctuati~ig velocity 

components in .Y direction 
oi, II, mean and fluctuating velocity 

components in .u, direction 
0’ dimensionless velocity. ii/~; 
.X. I‘ coordinates in streamwise and wall- 

normal directions 

x streamwise distance, measured from 

leading edge 
XC streamwise distance, measured from 

leading edge to the location of a step 
change in wall thermal condition 

x: strcamwise distance, mcasurcd from a 
sudden change in wall thermal 

condition 

“I’+ dimensionless distance from wall, L~.GV 
( ) time mean scale. 

Greek symbols 

% %, molecular and eddy diffusivitics for 

heat 
ij boundary layer thickness 
6, boundary layer thickness at a sudden 

change in wall thermal condition 
CS, thermal layer thickness 

CL Kronecker delta 
I: dissipation rate of k. ~‘(itl,,/?.V,)’ 
ill dissipation rate of t’, 2. z(>t;i.y,)’ 
1’. l’, molecular and eddy viscosities 

I’ density 

ok* ri- (Th. @,+a turbulence model constants for 
diffusion of k r ;‘i? and R, 3,) -. 

z. 7, time and wall shear stress 
5 X/1 mixed time scale. tj,~? (Ii-171 = I) 

ru. t, time scales of velocity and tcmpcraturc 
fields. k/i:. ?:(2c,). 

Subscripts 

e boundary-layer edge 
w wa I I 
wo wall upstream of a sudden change in wall 

thermal condition 
ws wall at a point of a sudden change in wall 

thermal condition. 

stepwise change in wall tcmperaturc, a constant heat 
flux followed by an adiabatic wall, and finally a con- 
stant temperature followed by an adiabatic wall. 

Except for the new points, Section 2 provides only 
a brief presentation of the mathematical model of 
turbulence for velocity field. Details of a new t’-c, 
heat transfer model are provided in Section 3. Section 

where D/D7 = 8;Gz-t u,?;‘?s,. 

4 gives a short description of the numerical solution 
In the k-r: model, the Reynolds stress Gyti, in equa- 

algorithm. Comparison between the proposed model 
tion (2) can be obtained from the following set ol 

results and the available experimental and full simu- 
equations 

lation data. together with the predictions from pre- 
vious models, arc provided in Section 5. 

2. TWO-EQUATION MODEL OF TURBULENCE 
k’ 

(4) 
FOR VELOCITY FIELD 

A velocity field is described with the following con- 
tinuity and momentum equations 
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(6) 

As indicated by Myong and Kasagi [14], and by 
Nagano and Tagdwa [12], imposing the rigid bound- 
ary condition (i.e. no-slip) at the wall does not necess- 
arily lead to the correct asymptotic solutions of k cc 

?.?, -UP x y’. v, cc y’, and t: c $’ for )‘ + 0, unless 
the wall limiting behavior of turbulence is properly 
incorporated in a turbulence model. In the present 

study, WC use an improved k-s turbulence model 
evolved by Nagano and Tagawa [I21 (referred to as 
the NT model), which reproduces strictly the limiting 
behavior of wall and free turbulence. Constants and 

functions of the NT model are summarized in Table 
I. Note that, in the NT model, away from the wall 

(where the turbulence Reynolds number R, becomes 
large), the relation v, x k’ ‘L,(L, = k3’*/c) holds and 
the eddy viscosity is thereby determined by the large- 
scale energy-containing eddies ; but close to the wall, 
the eddy viscosity is reduced to V, CT k’ ‘8 (II = (vi/c) ‘:4 

is the Kolmogorov microscale) and determined by the 
small-scale eddies dominating mainly the dissipation 
process. 

3. TWO-EQUATION MODEL FOR THERMAL 

FIELD 

3.1. Cotwning equati0n.s 

Using the concept of eddy diffusivity for heat SI,, the 
governing equations of the two-equation heat transfer 
model may be written (see, Nagano and Kim [S] ; 
Nagano et nl. [IS]) as 

(7) 

(8) 

As a time-scale equivalent to the relative ‘lifetime’ of 

the energy-containing eddies or temperature fluc- 

tuations, we adopt the mixed time-scale r, = 7(,7:)I 

(l+m = I), where 7” = k/c and 7, = (?/2)/e, are the 

dynamic and scalar time-scales, respectively. Obvi- 
ously, r,, blends both thermal and mechanical con- 

tributions. The characteristic length scale (i.e. spatial 
extent of a fluctuating temperature) can hence be writ- 
ten as L,, = k’ ‘7,,,, and the eddy diffusivity for heat 

can be modeled as c(, x k’/‘L, = kz, (equation (9)). 
The present expression for Z, can be regarded as the 
generalized form for the eddy diffusivity introduced 
by Nagano and Kim [8]. As described later. the indices 
I and m are to be determined so as to satisfy the 
requirements for the wall limiting behavior of ther- 

mal turbulence. In the NT model for velocity field, 
the wall-proximity effects are incorporated mainly 

into the model function of ,ht. Accordingly, we reflect 
the near-wall effects in a thermal held on the model 

function of ,fA. 
The optimal value of eddy diffusivity for heat X, can 

be given as a function of the state of both velocity and 
thermal fields by solving the transport equations for 
k, E, t’. and c,. The determination of the model con- 
stants and functions in equations (,9))(1 I) will be dis- 
cussed later. 

As mentioned above, we devise the modeling of ,fj, 

in equation (9), which has some properties in common 

with JL in equation (4), to account for low-Reynolds- 
number and/or wall-proximity effects, thus, taking 
into account the formulation for ,j;, given in Table I, 
we write ,f: as follows 

.f;. = (I-exp(-y+/A,)i’(l+B,/R’;) (12) 

where R,, = k(k/c)‘(?/c,)“‘/v is the turbulence Reyn- 
olds number based on the mixed time scale. 

The behavior of the turbulent quantities of vcl- 

ocity and thermal fields near the wall can be inferred 
from a Taylor series expansion in terms of J’, together 
with the continuity, momentum and energy equations, 
namely, 

Table 1. Constants and functions in the NT model equations 

(;‘ c I ci.2 Ok 0, .A‘ t; A,, B,, 

[l -exp (-.r+lA,,)l’ {I -0.3exp[-_(R,/6.5)‘]) 

0.09 1.45 1.9 I .4 1.3 x(l+B,,!‘R:“) x[l-exp(-~,‘/6)]’ 26 4.1 
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uz: = b,~,?,‘+(b,~,+c,bz)?,“+ “. 

In equation (13), considering a correspondence 

between k and 7’ profiles near the wall, a smooth 
change in temperature variance i’ in the immediate 

vicinity of the wall is assumed, i.e. (?t’/?y), = 0, 
which is exact in the cases of both uniform wall tcm- 
perature and uniform wall heat Hux. From equation 
(13), in the vicinity of the wall, we obtain the following 

relations: ii’ = y+. il ‘X ~3, 1’ ‘X J’. it’ ‘x j’. 
F” = Pry+, and t x J” ’ (where, p = 2 : without wall- 

temperature, t,, fluctuations; p = 0: with t, fluc- 
tuations). These asymptotic relations provide the rep- 
resentation for the wall limiting behavior of tur- 

bulence given as : k x J‘ ‘. - ur x J j. L ‘L J ‘I. I’ J J”‘. 
p[ x y z+P 2 and F, CL J!“. thus, substituting these 
asymptotic solutions for equations (9) and (12), we 

obtain 

a, X _t’ .J 1,,+, I ,i~,,n,i+ I,, 
(14) 

Note that, as seen from equation (8), r’t and Z, have 
the same power for _r near the wall. Consequently, 

from the wall limiting behavior of turbulence, we 
have the following two regimes according to the wall 
thermal conditions 

x, ?L Ji for p = 2 (without t, fluctuations) 

3, (r J’ for p = 0 (with t,” fluctuations). 
(IS) 

To satisfy the above requirements consistentiy, equa- 
tion (14) yields: II = 3/4. I = - 1, and m = 2. 

From the foregoing consideration, the eddy diffu- 
sivity for heat x,. which takes into account the near- 

wall behavior of thermal turbulence. can be written 
as 

(16) 

where 

.f; = [I -exp(-~,‘/A;)]‘(1 +B,,,/R,:‘) (17) 

R, = k(k/E)- ‘(t’/c,)‘/v = R,(2R)‘. (18) 

Here R = t&, = (?i2Q/(k/c) is the thermal-mech- 
anical time-scale ratio. As seen from equation (IS), 
the turbulence Reynolds number. R,,, based on the 
mixed time scale is directly linked to the hydro- 
dynamic turbulence Reynolds number R, = h-‘/w 
through the time-scale ratio R. In particular, when 
the velocity and thermal fields are in local equilibrium, 
R becomes nearly 0.5 (Beguier et al. [16]). and hence 
CI, = C,,f;k2iE, Rh = R,, and Pv, = C,,iC,. It should 

also be mentioned here that, in the region away from 
the wall. the present formulation for x, given by cqua- 
tion (16) is compatible with a statistical model 
developed by Yoshizawa [ 171. 

On the other hand, from equation (1 I), the molec- 
ular diffusion term balances with the dissipation terms 

at J’ = 0 : 

Considering the limiting behavior of wall turbulence. 

fhz 3c .VZ and ,/n, 1c ~3’ (without t, fluctuations) or 

.fb, K J+’ where /z > 0 (with t, fluctuations) are 
required to satisfy equation (19). In free turbulence, 
as described in the next section (see equation (29)). 
the limiting behavior requires 

Cl&l = c‘,: f; - 1’ (20) 

In the present model, the following equations are thus 
proposed to meet the requirements for both wall and 

free turbulence 

.f,,, = I1 -ev(-~~+!&,)12 (21) 

,f;,J = (l:C,,z)(C,Z./;-l)[l-CXp(-.I’+‘:B~)2)]Z (22) 

with ,fj = l-O.3 exp [-(R,!6.5)‘]. 

The constants appearing in the present two-equa- 

tion heat transfer model are determined as follows. 
Firstly, we specify a value of C,. in equation (16) 
defining the eddy diffusivity for heat z,. In the log-law 
region where the molecular dilIusion is negligible, i.e. 

/;, = f) = 1. C, may be given from equations (4) and 
(16), together with the turbulent Prandtl number 
Pr, = v,ix,, by 

C’, = C‘,,;‘[Pr,(2R)‘] (23) 

thus, substituting the typical values of C,, = 0.09, 
R = 0.5, and Pr, = 0.9 (Nagano and Kim [8]). we 
obtain C, = 0. IO. 

We determine the constants c’,,, and c‘,,, in the E, 
equation (11) from the decay law of homogeneous 
turbulence. In a homogeneous decaying turbulent 
flow, equations (5). (6), (IO) and (11) become simply 

di-:, 
1 

i7 
d.u 

(27) 

where the x axis is taken in the flow direction. On the 
other hand, it is known that the time-scale ratio R = 

(?/2~,)/(k/e) does not change in the flow direction in 
homogeneous grid-generated turbulence (Newman er 
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al. [ 181, Warhaft and Lumley [19]), thus, rewriting 

equation (27) in terms of R and substituting equations 

(24)-(26) into this equation, we obtain 

= -2; -(C,,f,-l)?. (28) 

Equations (27) and (28) give the following relations 

C”Zfr,Z = C,,,.l; - 1’ (29) 

Equation (29) is also valid for the initial period 

(,/;: =,f;,, =,fn2 = 1) in decaying turbulent flows, and 
hence we have C,,, = 2 and Cm = CtZ- 1 = 0.9. 

The constants G,, and ‘T@ for the turbulent diffusion 
terms in the ? and a, equation, (10) and (ll), are 

assigned the same value of 1 .O. This is consistent with 
the NK model. 

The model constants C,, and Cp2 for the production 

terms in the &,-equation (11) are determined by con- 
sidering the characteristics of the log-law region (con- 
stant stress-heat-flux layer) in wall turbulence. In this 
region, the convection terms in the transport equa- 

tions for k, z:, t’. and e, can all be ignored, and the 
production terms fork and tZ balance with the respec- 
tive dissipation terms, thus, with equation (16). rewrit- 

ing equation (11) gives 

With the above-mentioned characteristics of constant 
stress-heat-flux layer, the following relation is 

obtained from equation (30) 

c,> = (C,,, -C,,,)!2R+cD2-(ICZ/Prt)/‘T~C:!* (31) 

where ti is the von Karman constant. Equation (31) 
is similar to the well-known relation in the k-c model 

given by 

c,, = c,z-K2/Cr,,~,;'2. (32) 

The value of C,,, = 0.64 is then specified if we sub- 
stitute the foregoing values of C,,, CDZ, R, Prt, and 

C,, for equation (31) together with K = 0.39-0.41 and 
C,,, = 1.70 which is determined on the basis of com- 
puter optimization. Note that the present value of 
Cr, = 1.70 is very close to the NK model constant, 
C,,, = 1.80. (Recently, Jones and Musonge [20] 

developed the transport equation for E, similar to 

equation (11) and assigned the value of Cp, = 1.70 

and Cps = 1.40.) 
The constants Al and Bi in equation (17) are set to 

A, = A,,/Pr’!’ and Bi = 3.4, after consideration of the 
wall-proximity and Prandtl number effects described 
by Nagano and Kim [8]. The constants B,, and B,,* 

in equations (21) and (22), on the other hand, are 

assigned to BI,, = 5.8 and B,, = 6.0 in the light of the 
constant for ji in Table 1. 

The model constants and functions of the proposed 
two-equation heat transfer model are summarized in 

Table 2. 

4. NUMERICAL SCHEME AND BOUNDARY 

CONDITIONS 

Full details of the present numerical method of 

solution are given in Nagano and Kim [8] and Nagano 
and Tagawa [12]. The numerical technique used is the 
well tested Keller’s Box method (Bradshaw et al. [21]). 
Non-uniform grids in the normal direction with 

shorter steps close to the wall and longer steps away 
from the wall are usually employed for the calculation 

of turbulent boundary layers due to the large gradients 
near the surface of the body [22]. There are different 
techniques for constructing variable grid spacing in 

the direction normal to a solid wall as discussed in 
detail by Cebcci et al. [23], and Blottner [24, 251. The 
following non-uniform grid across the layer is thus 
employed 

y, = Al>,(K’-l)/(K- 1) (33) 

where Ay , , the length of the first step, and K, the ratio 

of any two successive steps, are chosen as 10 5 and 
1.03, respectively. To obtain grid-independent solu- 

tions, 201 cross-stream grid points were used. The first 
grid point was normally located well into the viscous 

sublayer, i.e. _v+ < 0.03. To confirm the numerical 
accuracy, the cross-stream grid interval was cut in half 
for the uniform wall temperature case. No significant 

differences were seen in the results. The maximum 
streamwise step-size was restricted to a sublayer thick- 
ness, i.e. Ax+ < 1. 

The boundary conditions at the wall (y = 0) for a 
velocity lie!d are : ii = 1~ = 0 and E, = v(d’k/ay’), or 
equivalently c‘, = 2v(Ck’ ‘/t?_y)E as can be seen from 

equation (13). The latter boundary condition for E 
at the wall provides much stabler computations and 
hence is used in the present model. For a thermal field, 
on the other hand, the wall boundary conditions are : 
F= TN and 7 = 0 for a uniform wall temperature. 

Table 2. Constants and functions in the proposed model equations 

c, C’P, Cl’? c,, cuz flh ud, .t fDI f “2 A, BL 

[I -exp (-.v+/A,.)l’ (tIC”I)(Gf; - 1) 
0.1 1.7 0.64 2.0 0.9 I.0 1.0 x(l+Bj,/Rz’“) [I-exp(-y+/5.8)]’ x [I-exp(-v+/b)]’ 26iPr"' 3.4 
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CX(?~/~.V), = - yW/lpcp and (~?f~/Zy)~ = 0 for a uniform 
wall heat flux, and (dT/@), = 0 and (?r-j?r), = 0 for 
an adiabatic wall. Note that the temperature-variance 
dissipation rate balances with the molecular diffusion 

at the wall, so that E,,, = IX(?(~~/~)/?J,~)_ holds. 
irrespective of wall thermal conditions. Again, it 

can be seen from equation (13) that this boundary 
condition for E, is identical to the expression: L,, = 
~(ij(At’)/i~)~ with Ait’ = ?(.I-. J*. 1) - t’(.y. 0. -_) = 

t’- tf. which provides stabler computations and 

thus is used in the present model. At the free stream. 
the boundary conditions arc u = UC. T= TC, and 
/, = i_: = [’ = t;, zz 0. 

The criterion for convergence is 

max 1 Y” ’ ” - Y(“Ijmax 1 Y”‘I < IO ’ (34) 

where Y = I?Z/CJ(Z: iI?‘, k, c, T, t’, and E,), and i 

denotes the number of iterations. The computations 
wcrc performed on a TITAN 3000 computer. 

5. RESULTS AND DISCUSSION 

As described in the preceding section. there are 
two types of wall limiting behavior for turbulence 

quantities in a thermal field, both of which depend on 
the imposed wall thermal conditions. To verify the 
adequacy of the present model, first we have analyzed 

the thermal fields in a boundary layer (air flow) with 
two typical boundary conditions, i.e. with a uniform 
wall temperature and with a uniform wall heat flux. 

Next, the proposed model was tested by application 

to boundary layers with other three different thermal 
fields; namely. a step change in wall temperature, a 
constant heat flux followed by an adiabatic wall, and 

a constant temperature followed by an adiabatic wall. 

5. I lJn$xw~ temptwtuw ~md urGfiwm heat$hcs wall.~ 

In Fig. I, comparison is made between the exper- 
imental temperature profiles in the turbulent bound- 
ary layers under two different wall thermal conditions 

(Zukauskas and SlanEiauskas [26], Gibson ct al. [27]. 
and Antonia ef ml. [28]) and the present predictions. 
The model predictions by Launder and Samaraweera 
[29] are also shown for comparison. It can be seen 
that the prcscnt model gives good predictions for both 
the uniform wall tempcraturc and uniform wall heat- 

-1 

I 

FIG. 1. Mean temperature profiles in a flat-plate boundary 
layer. 

flux conditions. while the predictions of Launder and 
Samaraweera, who used a second-moment closure 
model, in the outer region of a boundary layer arc less 
satisfactory. Predictions for temperature close to the 

wall were not presented in their paper [29]. 
Figure 2 shows the near-wall profiles of tempcraturc 

variance t’. For a uniform wall tempcraturc con- 

dition. the present model predicts the relation t’itj = 
0.03J i-Z in the vicinity of the wall, thus satisfying the 
required wall limiting behavior. For a uniform wall 

heat-flux condition, on the other hand. the prcdictcd 
t’ distribution approaches a constant non-zero value 
for j’ --f 0, which is also consistent with the outcome 
from the Taylor series expansion analysis. The results 

of direct numerical simulations (DNS) for channel 
Rows with a uniform wall temperature (Kim and Moin 

[30]) and with a quasi-uniform wall heat flux. i.e. 
(:F&/ii.\- = constant and tt = 0 (Kasagi ct ul. [3 I]) arc 
included in Fig. 2 for comparison, though the relevant 
Reynolds numbers arc tnuch lower than those in the 

present predictions. Both DNS results provide solu- 
tions similar to the present ones. Included here arc the 
experimental data of Antonia et a/. [X3] (q,, = con- 

stant) and Subramanian and Antonia [X] (L/,, = con- 
stant). It can be seen that, good agreement is obtained 
between the present predictions and the experimental 

data. 
As discussed previously, the turbulent heat flux rt 

needs to satisfy the wall limiting behavior of rt z I,’ 

for a uniform wall-tcmpcrature case and rt x J.’ for a 
uniform wall heat-flux case. As shown in Fig. 3, the 
present model reproduces these relations accurately 

and gives good agreement with the measurements of 
Antonia cut trl. 1281. 

In the present model, we use the physically strict 
relation c,* = r(?j(At’)/?J.),;’ as a wall boundary con- 

dition, thus, iQ Fig. 4, the near-wall distributions of I:, 
predicted by the present model arc compared with 

both the result of the DNS of Kasagi c’t (I/. [31] and 
the measurement of Krishnamoorthy and Antonia 
[33]. The present results for constant wall temperature 
and constant wall heat flux. are identical except very 
close to the wall where diffcre:lt wall boundary con- 
ditions arc imposed. The prcscnt results arc in good 
agreement with the DNS data of Kasagi (‘t trl. for 

FIG. 2. Near-wall behavior of temperature variance 
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Predictions 
- Tw =const. 
---qw =const. 
Experiment 
o Ant&a et al. 

Yf 

FIG. 3. Near-wall behavior of turbulent heat flux. 

y+ > 20. It can also be seen from the figure that the 
proposed model provides a reasonable overall con- 

sensus with the experimental data of Krishnamoorthy 
and Antonia [33]. In the k--E model, it is well known 
that the model prediction gives values lower than 
the DNS [34, 351. The difference between the results 
of the DNS and the present model near the wall would 

be attributed to the similar reasons found in the k-c 

model, although the detailed discussion is left for a 

future study. 

5.2. Step chunge in wall temperature 
To further verify the effectiveness of the present 

model for calculating various kinds of turbulent ther- 
mal fields, the prediction of mean temperature profiles 
for a constant wall temperature (FW = Te+ 16°C) 
followed by another constant wall temperature (TW = 
TJ are shown in Fig. 5. Also, included here are the 

experimental data of Chamay et al. [36] and the 
calculations of Browne and Antonia [37] at the same 
streamwise locations. It must be mentioned that 
Browne and Antonia used a two-equation mode1 of 
turbulence and a turbulent heat-flux equation model 
in their calculations. As is clearly seen, the present 
predictions are in good agreement with the measure- 
ments while the results of Browne and Antonia give 

considerable overpredictions. 

5.3. Constant heat flux followed by adiabatic wull 

The test case of a constant heat flux followed by an 
adiabatic wall is also very suitable for assessing the 

Predictions 
- T, =const 
---qm =const. 

--I--Krishnamoorthy Ant&a 
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Y+ 

FIG. 4. Comparison of the model results for the dissipation 
rate of temperature variance with the measurements of 

Krishnamoorthy and Antonia [33). 

FIG. 5. Comparison of the predicted mean temperature pro- 
files with the measurements of Charnay et al. [36). 

performance of the model. Figure 6 shows a com- 

parison between the present results and both the 
measurements of Subramanian and Antonia 1381 (as 
reported in Browne and Antonia [37]) and the cal- 
culated results of Browne and Antonia 1371 for the 

mean temperature profiles across the boundary layer. 
Again, for this test case, the present results are seen 
to be in good agreement with the experimental data ; 
however, rather poor agreement is obtained between 
the predicted results of Browne and Antonia and the 
measurements as shown in Fig. 6. 

The distributions of r.m.s. temperature predicted 
from the proposed mode1 are shown in Fig. 7, com- 
pared with the measurements of Subramanian and 

Antonia [38]. The general level of agreement with the 
experimental values at all locations is found to be very 

good. 

5.4. Constant temperature jbllowed by adiabatic wall 

The last test case for which calculations have been 
performed is concerned with the thermal fields in a 
boundary layer along a constant wall temperature 
followed by an adiabatic wall. Figure 8 shows a com- 
parison of the predicted results with the measured 

values (Reynolds et a/. [39]) of temperature differences 
between the wall and the free stream. Figure 8 also 
includes the wall-temperature distribution down- 
stream of the discontinuity in heat flux predicted by 

Adiabatx Wall 
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FIG. 6. Comparison of rhe predicted mean temperature pro- 
files with the measurements of Subramanian and Antonia 

[381. 
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FIG. 7. Comparison between the calculated r.m.s. tem- 
perature profiles and the measurements of Subramanian and Y+ 

Antonia [38]. FIG. 9. Variation of temperature variance for constant tem- 
perature-adiabatic wall. 

the integral analysis of Reynolds et ul. [39] and of 
Rubesin [40]. It can be seen that the present model 
gives results similar to the integral-equation pre- 
dictions of Rubesin and in acceptable agreement with 
the measurements. 

region of ut. It is also worth noting that the decay 
process is slow in a wall turbulent thermal field. 

Now that the forgoing test cases have validated the 
performace of the present model, we will look in more 

detail at the turbulent thermal field in the last test case. 
The measurements are not available for turbulence 
statistics; thus, the model predictions are the only 
means to understand the phenomena. In what follows, 
turbu!ence quantities related to temperature are nor- 
malized by AT,)(= Tw,,,- Fe) and the streamwise 

location X by .I’, which is a distance from a leading 
edge to the location of a step change in surface thermal 
condition. 

The variation of 6, with X shown in Fig. 11 discloses 

an important feature of a decaying thermal layer. The 
decay of the dissipation of? in the turbulent bound- 

ary layer on an adiabatic wall is very rapid. This, 
in turn, brings about tne slow decay of temperature 
fluctuations as shown in Fig. 9. The cause and effect 
may be explained by the resultant temperature profiles 
shown in the next figure. 

Variations in the temperature variance t’ and tur- 
bulent heat-flux i:t profiles in the thermal layer 
upstream and downstream of a sudden change in sur- 
face condition (i.e. constant temperature-adiabatic 
wall) are shown in Figs. 9 and 10, respectively. It can 

be seen that the temperature variance ? peaks near 
the wall in the upstream region (X,‘X, < 1) ; however. 
in the downstream region (X/X, > 1) where there is 

Figure 12 shows how a wall turbulent thermal layer 
decays when heat input is cut off. A very abrupt 
decrease in mean fluid temperature occurs in the wall 

region so as to satisfy the no heat-input condition, 
i.e. (c?T’/(?~?~ = 0. Within a short distance from the 
discontinuity point, the profile of mean temperature 
becomes uniform over most of the thermal layer. The 
generation of both t’ and C, through a mean tem- 
perature gradient thus disappears. This is the reason 
why the values of ;’ and E, decrease sharply in the wall 

“3 
- 6 

t 

Present Prediction 

x Const. Temp. 4 Adiabatic Wall 

7 
no heat input from the wall, t- decreases with increas- 
ing X and a maximum point moves outward towards 
the edge of the thermal layer. This means that, down- 
stream of the discontinuity in wall thermal condition. 

5 the generation oft , which mainly occurs in the wall 
region of the heated flow, deteriorates and the 

diffusion oft’ from the wall region to the outer layer 
becomes predominant, thus gradually thickening the 
thermal-layer thickness. From Fig. 10. it is seen that 
almost the same phenomenon occurs in the decaying 

1 10 102 103 I 0' 
Y’ 

FIG. 10. Variation of turbulent heat flux for constant tern- 
perature-adiabatic w,all. 
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FIG. 8. Comparison of the predicted variation of wall tem- 

peratures with the measurements of Reynolds et al. [39]. 
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FIG. I I Variation of dissipation rate of temperature variance 

for constant temperature-adiabatic wall. 
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Present Prediction 

Const. Temp.-Adiabatic Wall 

FIG. 12. Mean temperature protiles for constant tempera- 
ture-adiabatic wall. 

region as shown in Figs. 9 and 11. Consequently, a key 

factor which controls the decaying thermal turbulence 
is the turbulent diffusion. Although the experimental 
documentation is needed, these results demonstrate 

the usefulness of the proposed two-equation heat 
transfer model to investigate the structure of thermal 
turbulence. 

In this study, we have tested the proposed heat 
transfer model under various kinds of wall thermal 

conditions. Dependency on a molecular Prandtl num- 
ber is not, however, tested systematically, hence, in 
the next paper, we will report on this subject. 

6. CONCLUSIONS 

The main conclusions of the present investigation 
can be summarized as follows. 

(i) The model developed in this work reproduces 

the correct wall limiting behavior of thermal fields 
which changes with the wall thermal conditions. 

(ii) In comparison with second-moment, heat-flux 
equation models, the present model can be applicable 
to turbulent thermal fields with different thermal wall 
boundary conditions. The previous heat-flux models 
failed to predict the near-wall asymptotic behavior 

in a simple case of wall thermal boundary condition 

as reported by Launder and Samaraweera [29] and 
provided rather unsatisfactory predictions of tur- 
bulent thermal quantities [37]. It is established, there- 
fore, with reinforced evidence, that the performance of 

the proposed model is much better than the previous 
models. 

(iii) The proposed heat-transfer model discovers 
novel features of the decaying process of turbulent 
thermal-field quantities in a boundary layer and adds 
a reasonable comprehension about the scalar trans- 
port mechanisms in this physical phenomenon. 
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MODELE A DEUX EQUATIONS POUR CALCULER LES CHAMPS THERMIQUES 
TURBULENTS DANS DES CONDITIONS THERMIQUES ARBITRAIRES 

A LA PAR01 

Kbum&-On prkentc un nouveau mod& (’ +:, avcc me prediction precise des champs turbulents thermique 
de paroi. Ce modele reprodutt correctement le comportement limite a la paroi de la vitcsse et de la 
temperature dans des conditions thermiques parietales arbitraires. On fait I’evaluation des con&antes et 
des fonctions du modcle pour geniiraliser i’applic~lbilit~ du mod& I ‘- I:,. Celui-ci est test& avec cinq champs 
thermiques ditfcrents typiques que I’on rencontre souvcnt dans :es applications pratiques. Lcs rtsultats 
sont compares avec Its donnees experimentales disponibles et aussi avec les predictions de modcles 

antcrieurs. On montre que le prCsent mod&k convient mieux que les autres dija com~us. 

EIN ZWEIGLEICHUNGSMODELL FUR DEN WARMEUBERGANG IN EINEM 
TURBULENTEN STRdMUNGSFELD BEI BELIEBIGEN THERMISCHEN 

WANDBEDINGUNGEN 

Z~amm~n~~~ung-Es wird ein neues Model1 vom Typ I~-{:, fur den W~~e~~r~ang vorgestellt, was 
eine genaue Berechnungdes wandnahen turbulenten Temperaturfeldes erlauht. Das vorgeschlagene Model1 
bildet das korrekte Verhalten von Geschwindigkeit und Temperatur an der begrenzenden Wand bei 
beliebigen thermischen Wandbedingungen nach. Fur eine allgemeine Anwendbarkeit wird eine Bewertung 
der Modellkonstanten und -funktionen vorgenommen. Das vorgeschlagene Model1 wird anhand von fiinf 
typischen thermischen Feldern ~berpr~ft, die oft bei technischen Anwe~dungcn in turbu~cnten w~~ndnahen 
Scherstromungen auftreten. Die Modellergebnisse werden mit vcrfiigbaren Versuchsergebnissen sowie mit 
Ergebnissen aus vollstandigen Simulationen und mit Ergebnissen aus hisher gebrHuchlichen Modellen 
verglichen. Es zeigt sich, daB das vorgestellte Model1 besser als die seither gehrauchlichen Modelle arbeitet. 

ABYXLTAPAMETPH9ECKASi MOfiE3Ib TEIUiOrIEPEHOCA jJJI5i OnPEfiEjIEHMII 
TYPIGYJIEHTHbIX TEFUIOBbIX KIOJIEti lIPI lIPOki3BOJIbHbIX TEI’IJIOBbIX 

YCJIOBWIX HA CTEHKE 

~~T~~~-Hap~ny C TOSHbIM On~AeneHneM Typ6y~eHTH~X TennOBbfX ilOJIeii Ha CTeHKe II$XAJia- 

ramcx HoBaR t“-et Monenb Tennonepefroca. IIpeAnoxeHHar MoAexb aAeKBaTti0 ~ocnpolr3~oAe~ npene- 

AbHbleXap~KTepACTIlK~CKOpOCT~~T~M~epaTypbI~~~~pO~3BO~bHbIXTe~~OBbIXyC~OBHKX HaCTeHKe. C 
r,enbKI o6o6memiR I,pHMeHEIMOCTH f2-8, MOAeAA IIpOBeAeHa OUeHKa ElOCTOIlHHblX &i (PyHKUMii MOAeJIH. 

%&@eKT&fBHOCTb MOAeJlil TaKme IIpOBepSeTCR npF9 IIRTX pa3ffWlHbiX TWlWSHbIX paCII~J$eJ,eHfiSX TeMm?- 

PaTypbr, SaCTO BC~e~a~~~XC~ B UH%SiepHbIX np~nO~eHnffX, B j'C.ZOBEiX npHCTeHHMX ryp6y~e~n~x 
CABUrOBbIX TeVeHdk Pe3,'AbTaTbI PaCVeTOB CpaBHHBatoTCS, C WMefOI,$ESMtlCX 3KC~epHMeHTa~bHbIMH 

AaHHbIMII U pC3yJlbTaTaMPl MOAeJI~pOBZUSE%5&a TaKXGC paC'4eTaMH I,0 paHee I,pHMeHKBIUHMCK MOAi%IRM. 

nOKa3aH0, YTO npeAJIOXCeHHaXMOAe,,b HZiMHOT03i$+eKTABHek ",,e~bInyUt,X. 


